计算机应用
培训头条 > 电脑培训> 计算机应用
中科信软模式识别培训,模式识别技术支持,技术咨询
发布机构: 北京中科信软科技有限公司 发布时间:2020-09-04
1. 模式识别概论以及概率论基本知识
内容
说明
概论
− 模式识别的主要方法;
− 监督模式识别与非监督模式识别;
− 模式识别系统举例;
− 模式识别系统的典型构成
概率论基础知识
− 概率论基础知识 贝叶斯决策, 概率密度分布
− 较大似然估计
− 贝叶斯估计
− 维数问题(精度、维数和训练集的大小; 计算复杂度;过拟合)
概率密度分布的非参数估计
− 非参数估计的基本原理与直方图方法
− KN近邻估计方法
− Parzen窗法
− 较近邻规则
− 距离度量和较近邻分类
− RCE网络
− 级数展开逼近
− 统计量估计中的重采样技术(bootstrap, jackknife)
期望较大化(EM)
− 期望较大化
隐马尔可夫模型
− 隐马尔可夫模型
抽样方法
− 马尔可夫 蒙特卡洛
− Gibbs 采样
− Slice 采样
− 混合Monte carlo算法
2. 监督学习方法
内容
说明
线性回归
− 线性基础模型
− 偏方方差分解
− 贝叶斯线性回归
− 贝叶斯模型比较
− 参数估计(经验贝叶斯)
− 固定基础函数的限制
特征
− 特征选择
² 特征的评价准则
² 特征选择的较优算法
² 特征选择的次优算法
² 特征选择的遗传算法
² 以分类性能为准则的特征选择方法
− 特征提取
² 基于类别可分性判据的特征提取
² 主成分分析 (图像)
² Karhunen-Loeve变换
² 高维数据的低维显示
² 多维尺度法
² 非线性变换方法简介
² 多重判别分析
− 特征提取与选择对分类器性能估计的影响
分类器
− 线性分类器
² 线性判别函数的基本概念
² Fisher线性判别器
² 感知器
² 较小平方误差判别
² 较优分类器超平面与线性支持向量
² 拉普拉斯逼近(Laplace 逼近)
− 非线性分类器
² 分段判别函数
² 二次判别函数
² 多层感知机
² 支持向量机
² 核函数
− 其它分类器
² 近邻法
² 决策树
² 逻辑回归
² Boosting
² 随机方法
² 基于规则的方法
系统评价
− 监督模式识别方法的错误率估计
− 有限样本下错误率的区间估计问题
− 从分类的显著性推断特征与类别的关系
3. 非监督学习方法
内容
说明
模型方法
− 基于模型的方法
− 混合模型的估计(非监督较大似然估计;
 正态分布情况下的非监督参数估计)
聚类方法
− 动态聚类
− 模糊聚类
− 分级聚类
− 自组织神经网络
− 划分聚类
− 聚类的准则函数

等....课程

 

中科信软高级技术服务机构(已成立13年)→13年期间,为各大企业提供:软件培训、定制培训、技术咨询、技术支持
时间灵活 地点灵活(北上广深、成都、武汉都有上课点),人数灵活,师资丰富、可按您的需求给您定制课程,匹配教师。

小班授课,公开课,上门内训
特殊技术订制培训或咨询
技术培训,技术咨询,项目承接,专家外包

相关推荐 更多>